The purpose of this project is to design and mass-produce kits for a floating tiny house that can sail. It combines high-tech modeling and fabrication and low-tech assembly that can be carried out DIY-style on a riverbank or a beach. This boat is a 3-bedroom with a kitchen, a sauna and a dining room. The deck is big enough to throw dance parties. It can be used as a river boat, a canal boat or even a beach house. Oh, and it's rugged and stable enough to take out on the ocean. Kits will start at around $50k (USD). The design has been tested in simulation and prototype; full-scale production will begin next year.

Tuesday, February 13, 2018

Marine Russian Stove

During the decade or so we have spent living aboard, we went through a succession of methods to keep the cabin warm during the cold months. On our first journey south, we cast off from Boston in mid-October, the day before the marina would have kicked us out because we hadn’t signed a contract for winter dockage. We progressed south rather more slowly than we had expected, and made it as far as Charleston in early December. There we decided to overwinter, and proceeded further south three months later. When we first set off, all we had on board was an electric space heater, plus a propane heater powered by 1 lb. camp stove canisters. We went through a large pile of these. The electric space heater only worked when we were tied up at the dock and plugged in to shore power. While under way, we tried to keep warm by burning propane. But propane generates a lot of moisture as it burns, causing the entire cabin—the clothing, the bedding, everything—to become dank, robbing the body of heat, while the moisture in the air condensed on the underside of the cabin top, causing it to literally rain inside the cabin. (There are few things more disagreeable than an intermittent cold drip on your head as you are trying to sleep.) When we got to Baltimore, we tied up at a marina to which I had previously arranged to have shipped a propane-fired Cozy Cabin Heater. It was designed to be plumbed to a 20 lb. propane tank, and included a flue, thus solving the moisture problem. I installed it using the materials on hand and life got significantly better. Once in Charleston, where we overwintered, we used this heater along with the electric space heater, and the cabin stayed comfortable.

Eventually we got back to Boston, by which point the Cozy Cabin Heater died, as had the company that made it, and hunting down replacement parts for it turned out to be a nightmare. This is not at all unusual: most of the equipment manufactured for the recreational marine market is shoddy, overpriced and falls apart rather quickly. At that point, as part of a thorough refit, I replaced it with a Tiny Tot charcoal stove, made by a tiny company somewhere in Michigan. The heat it delivered was intense and very dry, and kept the cabin toasty all by itself on even the coldest nights with no condensation problems. But we had to get up every 2-3 hours to add 5-6 charcoal briquettes. Solid fuel stoves were forbidden at the marina where we stayed, but nobody noticed. Also as part of that refit I insulated the entire cabin with two layers of radiant barrier, ½ inches of Pink Panther foam insulation, another layer of radiant barrier and a layer of fancy 1/16-inch varnished cherry plywood with oak trim. This made a huge difference: there were no more condensation problems and the cabin felt warmer than one would have guessed by looking at the thermometer. The one remaining problem was the cabin sole: there was no way to insulate the bilge and it was still cold. In spite of putting down rugs everywhere possible, it was difficult to keep our feet warm.

We were about to set off sailing again when we became pregnant and had to “upgrade” to a larger boat. The reason “upgrade” is in quotes is because we sold a very good boat—Hogfish, the eminently serviceable, versatile and fun 32-foot sharpie custom-built by Chris Morejohn—and bought an unwieldy, boring maintenance nightmare that is the typical commercially built yacht—a 36.5-foot Pearson. Its only real selling point is that Pearson made a mistake and made the fiberglass of the hull ridiculously thick, thus making it fairly indestructible. Over the five years that I owned that Pearson I came to genuinely detest it. Rest assured that I will never buy another commercially built production boat again, having learned firsthand all the different ways in which they are crap. As far as I am concerned, it’s either going to be a Quidnon—or a nice homestead. But if all goes as we expect, I’ll have one of each.

The Pearson came with a very strange piece of equipment: a Newport evaporative diesel heater. It used a little electric pump to squirt diesel oil into a bowl, and it was your job to get it burning. This involved tossing in some tissue paper soaked in diesel, lighting it on fire, and using a little electric fan to vent the fumes and fan the flames until the bowl of oil heated up enough to start evaporating and burning on its own. When everything was working as it should, it produced a pretty-looking warm glow, much like a fireplace. The rest of the time it produced prodigious amounts of soot and made the cabin stink of diesel oil. And the once in a while—invariably on a cold and stormy night—it would blow out, and coat the walls of the cabin, and everything inside it, with a fine film of smelly, oily soot. We used that heater for one winter, then gave up on it and let it sit, unloved and unused. As far as the rest of the boat, we did get some use out of it. I moved it south one summer, single-handing all the way down the coast, then had my family fly down, and there it stayed, at the dock, until we sold it. I didn’t enjoy sailing it; it sailed like a pig, with a strange corkscrew motion and a jarring “stomping on the breaks” effect at every other wave as the Pearson buried its fat snout in it. Well, that’s what you get with a hull that’s shaped like an endive. Its best feature by far was the heads: it had a full-size shower stall. Its second-best feature was the galley—once I tore out and rebuilt half the cabinetry.

Another problem with an endive-shaped hull (and most production cruising sailboats are, unfortunately, shaped like that) is that is almost impossible to insulate. On Hogfish, the sides were made of flat plywood sheets, curved in a single direction, and this was easy to insulate by adding flat slabs of foam. This is also going to be the case with Quidnon. Also, on Hogfish the sides were accessible, while the Pearson the cabin was a mess of fiberglass forms, one wedged into another before the deck got screwed on. (Yes, the deck was screwed on, not bolted on, using sheet metal screws bedded in epoxy; the wonders of commercial boatbuilding never cease to amaze!) Clearly, the designer had spent zero minutes thinking about how this hull could ever be insulated. Thus, the Pearson stayed uninsulated, and the cabin felt cold no matter how many electric space heaters we had going. We used a thick rug in the salon and electric blankets under all the mattresses, and that helped. We also taped bubble wrap under all of the hatches and insulated the companionway hatch as best we could.

As an aside, the economics of unique, versatile, custom-built boats like Hogfish, and like Quidnon is going to be, and sloppy production boats like the Pearson are very different. When I put up Hogfish for sale it sold almost immediately, and I doubled my money on it. If I hadn’t accepted the first offer (which I did because the buyer matched my asking price) there would certainly have been a bidding war. The Pearson stayed on the market for six months and eventually sold for a miserably small amount of money, because there is a glut of very similar boats sitting on the market forever, unused and unloved. The closing date for the sale fell on my birthday, which I took to be a sign that Neptune had taken pity on me. This contrast hints at what the situation will probably be like with Quidnons, once there is some number of Quidnons floating about. There are likely to be bidding wars for any of them that come on the market, be they bare hulls or be they finished boats with all of the equipment and amenities installed.

Getting back to the question of how to heat the cabin, our plans for Quidnon is to make it very comfortable and cheap to heat. Last week, Chris Raine asked a profound question: “Will this houseboat also have a Русская печь?” This question, I thought, requires an equally profound response, so here it is. What follows is an excerpt from my book Shrinking the Technosphere.

The design of the Russian stove is several centuries old and seems to have emerged soon after the spread of firebrick, which is a formulation high in silica that is less susceptible to spalling when heated repeatedly. It is a massive masonry structure with its own foundation. At its center is a vault with an arched ceiling and a flat floor, often high enough for someone to squat inside. Fire is set inside the vault, far inside the stove. At the front of the stove is a flue, which includes a dogleg with a gate that is used for hanging meat and sh for smoking. Right back of the flue is a threshold that protrudes down from the top of the vault, holding hot combustion gases inside the innermost part of the vault, resulting in better heat transfer. The top of the vault is filled with solid fill and covered over with a layer of brick, forming a platform, and a straw-filled mattress, which is often big enough to serve as a bed for an entire family of five. Between October and May, when the stove is red twice a day, the temperature of the platform stays at a constant, comfortable 25–27ºC (76–80ºF). During the hot part of the summer, when the stove is not red because cooking is done at an outdoor hearth, the stove provides a cool place to sleep.

The outer wall of the stove has several niches. They improve heat conduction from the stove to the air in the room and are also used to dry clothes, herbs, mushrooms and berries, to keep food warm and to provide a place for the samovar, which boils water for tea. The firebox of the samovar, typically stoked using pine cones, exhausts into the flue of the stove. Under the stove is a space that is used to store firewood and can be a warm place for animals to sleep. The stove can also be used as a sauna—by sitting cross-legged inside the vault when it is relatively cool.

The Russian stove includes an entire dedicated set of utensils that are specific to it, each perfected over the centuries to have the largest possible set of functions. Food is cooked in clay pots and in cast iron skillets that lack a handle. The pots are placed inside the stove using stove forks, which come in three sizes and grab pots by the neck, while the bread and the skillets are moved about using a flat-bladed wooden spade, similar to the paddles used to handle pizza.

For the sake of comparison, let’s consider what you’d have to shop for if you didn’t happen to have a Russian stove. To heat the house, you’d need to buy a furnace and either install an oil tank or hook the house up to a gas main. Then you’d need to construct a way to distribute the heat, through either forced air or baseboard heating, and this involves installing lots of either ducts or pipes. You could also install a modern, energy-efficient wood stove, but then the bedrooms would be cold, so you’d probably run out and buy some electric space heaters and, to keep the beds warm, some electric blankets. To cook food, you’d need to buy a cooking stove with an oven, either gas or electric, a toaster and a microwave oven. You’d need a separate smoker for smoking fish and meat, plus some drying racks for drying things. Or you could just get rid of all this expensive, short-lived junk and render yourself naturelike by building yourself a Russian stove and using it in place of all of the above.

From Shrinking the Technosphere, p. 139-40

So, how does one adapt the Russian Stove concept to a boat? Obviously, placing a massive masonry structure on board is out of the question. But after giving the question some thought I found ways to provide for most of the rest of its uses, including all of the following, using a relatively lightweight structure made of sheet metal:

• Keeping the cabin warm and providing warm, dry places to sleep and sit
• Heating water for showering, bathing and washing and to keep water ballast tanks from freezing
• Cooking
• Making steam for sauna
• Generating electricity
• Drying things

There will be two identical stoves—one in the galley, one in the heads/sauna—that will burn wood, charcoal or propane (since some doing like having to stoke a stove, and some marinas forbid the use of solid fuel). To burn propane, the ash box is replaced with a propane burner; the firebox can then be repurposed as an oven and used for baking or broiling. But when cruising or overwintering along wooded shores propane may be hard to come by while firewood is likely to be plentiful and either cheap or free for the taking, and so the option to burn wood is very useful.

Above the firebox is a stack of three heat exchanger compartments. Flue gas from the firebox can be sent through any of them using diverter valves. Right above the firebox is the water heat exchanger; next is the air heat exchanger; and at the top is the hot plate used as a cooking surface. The flue gas is then discharged into an 10-foot smokestack that penetrates the deck and rises above it, to produce plenty of draft. The sides and the back of the stove are double-walled, with a layer of rock wool between the walls for insulation.

The back wall, which is in contact with the hot flue gas, is especially well insulated, with a layer of aluminum flashing sandwiched between two layers of rock wool to provide a radiant barrier. A patch of the back wall is left uninsulated; there, a thermoelectric generator module is attached directly to the steel plate that is contact with the hot flue gas. The cold side of the thermoelectric generator is cooled by circulating ballast water through a water jacket. The two thermoelectric generators will provide a total of 100W of DC current—50W on each stove—and also keep the ballast tanks from freezing.
In the heads the hot plate surface has a pile of sauna stones attached to it using a stainless steel mesh. Having a sauna on a smallish sailboat may seem like an extravagance, but the Finns, the Russians and many others would disagree. I am sure that anyone overwintering on a Quidnon would value having a sauna on board.

Since most people prefer to cook with propane rather than fire up the stove for that purpose, in the galley the hot plate will usually have a propane cooktop placed over it. Above it is an exhaust hood vented to the outside; in the relatively small space of the cabin, it is essential that cooking smells not be allowed to permeate the cabin.

Space heating is via warm air. A circulator fan takes a mixture of outside and inside air and pushes it through the air heat exchanger. The output is injected into a network of ducts and plenums under the cabin sole which distributes the heat evenly throughout the cabin.

The plenums can be adjusted for optimum heat distribution and to suit the preferences of the occupants of each cabin and berth. Some of the warm air is sent under all of the berths, to keep the bedding warm and dry. In addition, warm air can be sent into the cockpit lazarettes and the cockpit well, to keep the cockpit warm and to provide warm places to sit while sailing. To keep the heat in, the cockpit can be enclosed using sliding window panels along the sides and a transparent vinyl curtain across its aft end.

The water heat exchanger is used to heat up water in the hot water tank used for bathing, washing and showering. The hot water tank is fitted with an alarm: when the water temperature rises above 80ºC, an alarm sounds, informing the stoker that it is time to turn the diverter valve on the water heat exchanger to off and to turn off the hot water circulator pump.

There are several good reasons why there are two stoves instead of just one:

• When overwintering on a Quidnon in the far north, hauled out on ice or on shore, and temperatures drop below -20ºC, both stoves would need to be fired in order to to keep the cabin toasty.
• During the warm and hot months in the temperate latitudes, and in the tepid ones, people still want hot water to be available, but lighting the stove in the galley would make it uncomfortable to be in, but the stove in the heads can be used instead.
• Having a large wood-heated cooking surface is very useful when preparing large quantities of food—whether to feed large groups or to process and lay up supplies for the winter—but the one in the heads is occupied by a pile of sauna stones.
• Having a pile of hot sauna stones to throw water on is the excellent, traditional way to generate steam for a sauna.

Above deck, one more flue gas diverter and heat exchanger can be installed to supply heat to a hot box that can be used to dry various things: mushrooms, salted fish, herbs, fruits and berries, clothing and footwear, etc. The hot boxes—one for each stove—can be made in one of two ways: as an easily assembled temporary installation, or as a permanent fixture attached to the bulwarks. In either case, the hot boxes provide additional warm places to sit while out on deck.

Two things need to happen in order to make the Marine Russian Stove a reality. First, with your help, I hope to sanity-check the concept and see if I made any mistakes or omissions. Second, if the concept is sound, comes the step of doing the math and producing the mechanical drawings, and if any of you are knowledgeable about stoves and heating system design and have the interest, I would welcome your input.

Tuesday, February 6, 2018

Specifically Useful or Generally Useless?

I once made a cockpit awning. It was a fiberglass-over-plywood affair. Not only was it a cockpit awning, but it also could have been pressed into service as a mediocre paddleboard, a bus shelter for small children and/or midgets, a roof for a tiny gazebo, a protest sign, a miniature frog pond and, of course, a planter. It turned out to be a universally useful/useless piece of crap, depending on how you looked at it.

It started well. I used 1/16-inch Luan for the top and narrow slats of 1/2-inch for the frame, which I cut to gentle curves that made the top into a cold-molded conic section with just a tiny bit of spherical distortion for added stiffness. I filleted the inside joints, sealed the plywood with epoxy, fiberglassed and faired the top… and then I tossed it. Actually, I gave it to some artists, thinking they might use it for some sort of art installation. It didn’t make that good a cockpit awning: too heavy, too difficult to mount securely, plus it added too much windage aft. I didn’t think it would survive a hurricane (unlike the hard dodger I made earlier, which survived passing close to the eye of Hurricane Matthew with no damage).

I did most of the work on sawhorses on the floating dock at the marina. All of the other marina denizens, who mostly just sat on their boats and got drunk, were rather enthusiastic, and a few even tossed some business my way, fixing stuff on their boats. But the marina staff were less enthusiastic, talked about made-up “customer complaints” and eventually exiled me, together with my sawhorses and tools, to a windless, gravel-paved back lot, where I worked roasting in the sun. The hostile work environment probably had something to do with the project’s ultimate failure, but mostly I blame myself, for not spending enough time on the design phase.

There are plenty of designs that are specifically useful for their stated purpose, but are otherwise completely useless. In this category are special-purpose tools, like the egg slicer or the lemon juicer. Yes, they make short work of slicing hard-boiled eggs or juicing lemons, but beyond that they just add clutter. In a pinch, both can be used to prop open doors and windows, and the egg slicer makes a tiny out-of-tune harp, in case you are ever in need of a really pathetic sound effect. But that’s it.

Lots of boat designs are the same way. Most yachts, for instance, are only useful for showing off how rich the owner is (or was before he bought the yacht). Sporty ones are only good for pounding across the seas slightly faster than the competition and in great discomfort. Shantyboats, sailing scows and single-wides floating on barges or pontoons are cheap to maintain and comfortable to live aboard, but they give harbormasters and marina managers the vapors because they don’t look sufficiently yacht-like.

In setting out to design Quidnon, my objective was to create something sufficiently versatile to make it one’s single most valuable possession. It is a houseboat, a motorboat, a sailboat, a party boat and a beach house. It can handle deep water as well as the shallows. This level of versatility calls for some amount of compromise, and the question is, How much compromise is too much? “Better is the enemy of good enough” is a good saying, but how does one go about determine what’s good enough? And when should the alarm go off to indicate that a design has cross the line between generally useful and generally useless?

This requires lots of careful thought, and that is why the design phase of the Quidnon project is taking a few years rather than a few months. A typical boat for a rich guy to show off on or for a charter fleet is relatively easy to design. The design of a very unusual boat that will be useful as a home and a magic carpet to many different kinds of people all over the planet is far more challenging. And yet I think we’ve come quite far. A dozen or so well-defined design tasks stand between us and a set of plans from which we can build the first hull.

I know that are number of you are waiting for that moment. I am sorry to make you wait, and to make up for that somewhat I want to share with you the complete list of tasks to be completed before we can produce the design plans. Very importantly, these tasks need to be thought through before they can be drawn. As they say in the world of software, “with enough eyes, all bugs are shallow.” So far, this has been the case with Quidnon as well: over time, good ideas have been added and bad ideas eliminated simply through knowledgeable, thoughtful people asking good questions. If a question doesn’t get asked, a bad idea can stick around for a long time.

A case in point: Willie, a marine engineer who recently joined the project, asked a simple question: Why are there twin rudder blades? The boat doesn’t heel much, so angling the rudder blades doesn’t add much to the performance. The Ackermann steering geometry requires a complex (and expensive) linkage. And accommodating the twin rudders complicates the hull shape at the transom. Why not have one rudder, located amidships, where it can deflect the prop wash, for better maneuverability?

Some of this logic also applies to the twin keelboards. If the boat only heels 12º even when pressed hard (as shown by the scale model) then angling the boards has little benefit. But the second board does add complexity and cost; why not get rid of it and just have a single centerboard? It can be mounted off-center, as in some of Phil Bolger’s designs, to keep the center of the cabin unobstructed by the centerboard trunk.

And the answer is, I initially added the twin keelboards and rudders before I knew how little Quidnon would heel, and I didn’t revisit the question because until recently nobody had asked it. So, please ask! With that in mind, here are the known tasks to work out.

• Add a small deck arch at the bow to serve as a mast support

When the masts are taken down, they fit within the overall length of the boat while sitting on the deck arches with the sails (along with spars and battens) slung below them. But the masts are unsupported at the bow. Adding a post at the bow would preclude a boarding ladder from being deployed off the bow. This is useful when docking bow-to (to pick up or drop off passengers quickly), when nosing up on a beech or to an ice floe, etc. The arch should be skinny so as to not obstruct the view forward. And it should not incorporate vents, as do the other two deck arches, because there is often too much spray at the bow that would make it through. Ventilation for the U-berth will need to be provided in some other way, such as through airducts run under the cabin sole.

UPDATE: In response to this, Matt suggested that the mast tabernacles incorporate shelves to support the masts. This is a very good idea. The foremast is close enough to the bow so that this change would make no difference. Mast shelves on the mainmast would be useful too: when the mainmast is first lowered down and the tabernacle hinge pin removed, the forward end of the mast needs to rest on something before it can be pulled forward. The mast shelves should extend aft of the mast tabernacle hinges so the masts can rest on them as soon as they are unhinged.

• Add dinghy forks aft

This is a relatively small detail, but important. There is ample room for storing multiple dinghies on deck, but it is often helpful to be able to deploy a dinghy quickly. Setting a dinghy upside-down on dinghy forks that slide out from the transom and lashing it down securely is in many ways optimal, and in my experience better than hanging the dinghy from dinghy davits so that it rocks, accumulates spray and rainwater and blocks the view aft. The dinghy forks can be used as dinghy davits when Quidnon is at anchor or at the dock, just to lift it out of the water, to keep it from accumulating marine growth and to give would-be dinghy thieves second thoughts.

• Add skids to the bottoms of keelboard trunks

Having straight skids is useful in a number of cases, such as rolling the boat ashore over round sticks and dragging it onto and across ice. If one of the keelboards is eliminated, there will still be two longitudinal full bulkheads that can be extended below the bottom to form the skids. The bottoms of the skids will need to be fiberglassed heavily and finished with epoxy thickened with graphite powder to provide a durable, low-friction surface.

• Finalize design of sliding doors

There are a few places where two-panel “Star Trek” sliding doors (minus the silly swish-swish noise) make a lot of sense. We already have a good design that uses counterweights on loops of cable to keep the panels from sliding open or closed as the boat rocks. It just needs a couple of tweaks. The main one is to have two counterweights—top and bottom—to compensate for angular momentum.

• Design stoves for heads and galley

The two stoves can be identical. They need to be able to burn propane, wood or charcoal. When burning propane, burners are inserted into what is normally the ash pan; the firebox can then be used for baking or broiling. The top of the stove is a cooking surface for the galley stove and a rock heating surface (to make steam for the sauna) in the heads. There need to be two thermostatically controlled louvers to divert flue gas flow to two heat exchangers. One heat exchanger is air-to-air, the other is air-to-water. The hot air is piped around through ducts under the cabin sole and to the cockpit well, for heating. The hot water is piped through an insulated hot water tank, to be used for washing and bathing. In freezing weather, some of the hot water needs to be piped to the water ballast tanks, to keep them from freezing.

• Rework joinery to use “screw and glue” rather than “mortise and tenon”

The scale model, and the earlier plan, used a lot of mortise and tenon joinery. It worked quite well in some places and less well in others. Specifically, it worked well for orthogonal joints and badly for joining elements on a curve. And it suffered from three major overall defects: 1. because the joints had to be kept a bit sloppy to make assembly possible, it soaked up a lot of epoxy, adding weight and expense; 2. it turned out to be rather difficult to calculate the strength of these joints; and 3. a lot depended on how carefully the joints were filled with epoxy, leaving open the possibility of voids that would concentrate moisture and cause rot and in pinholes that would produce small leaks. For all of these reasons, we decided to use a much simpler joinery technique of using square or beveled fir sticks and screwing and gluing the plywood panels to them. This technique is time-tested, the pull strengths of fasteners and the holding power of epoxy joints are both well known, and the skill level required to achieve good results is quite low. But quite a bit of structural analysis needs to happen in order to determine the appropriate sizes and spacings of screws.

• Rework the shape of the bow and the transom

With the twin rudders gone, the shape of the transom is simplified. Previously, the bottom, where it meets the sides of the transom, had to be angled; now it can only be curved in one direction: fore-and-aft. The bow needs to be made deeper in order to compensate for the loss of some 3 tonnes of fixed ballast aft by adding a shallow stem to it, as I explained in a previous post. The addition of the stem will also help sweep aside floating debris and bits of thin ice. The exact shape of the bow will be determined by running Orca3D hydrostatic simulations, to make sure that the boat sits on its lines.

• Rework bow construction technique

This didn’t work out so well on the scale model because the curves are too tight to be cold-molded. I ended up having to steam-bend plywood, which is not something we should expect Quidnon assemblers to be comfortable doing. Plan B is to use a single layer of 1/8-inch plywood to create the shape, then use it as a male mold to lay up as much fiberglass as needed to give it the necessary stiffness and strength. On the other side of the 1/8-inch plywood will be a lattice of thicker plywood to support the shape from the inside.

• Rework sheer strip assembly, hull and deck joints

A major problem when assembling the scale model had to do with fitting the sheer strips, which were two layers of plywood. At least 3 layers of 1/2-inch plywood will be needed for the full-scale build. The holes for the deadlights didn’t line up and prevented the sheer strips from developing a smooth curve. It took a lot of clamps to keep it from becoming lumpy. So, the revised plan is to make the deadlight holes using a hole saw or a jig saw and a router post-assembly. Also, after a bit of math it turned out that the deck-to-sheer strip and sheer strip-to-topside joints needed reinforcement. The simplest way is to use perforated aluminum angles rolled to the right and curve and attached using stainless steel mechanical screws with fender washers and nuts. That’s a lot of hardware, but deck-to-hull joints are critical and notorious for developing problems.

• Rework the rudder to use a single, central rudder blade

The rudder blade assembly can be tucked under the transom into the recess between the engine well and the transom that is directly below the gas tank and the propane locker. The recess is already there so that the back of the engine well doesn’t catch waves or prop wash from the motor. The entire Ackermann linkage goes away (along with several thousand dollars’ worth of expensive hardware). Some amplification of the tiller angle using an adjustable linkage between it and the telescoping tiller extension may still be required to keep the useful swing range of the tiller inside the cockpit.

• Convert inboard sides of keelboard trunks into full-height, vertical, longitudinal bulkheads, then get rid of the port keelboard and its keelboard trunk.

This was a major area of concern. There is a lot of side force on the keelboard trunks from both the keelboards and the mass of the water ballast. The longitudinal bulkheads will have openings in them through which to access the pilot berths, which are on top of the ballast tanks, and the sides of these openings may need to be reinforced with vertical ribs.

• Create plumbing, electrical and air duct schematics

The plumbing schematic exists; the electrical schematic needs to be created. The routing for all of them needs to be laid out and components selected.

• Design engine mount

Similar engine mounts, in which the motor slides up and down instead of tilting, exist for catamarans, so it may be possible to repurpose or borrow an existing design.

• Complete design of standing and running rigging

The standing and running rigging for the sails needs to be tested on a physical prototype at 1:5 or 1:4 scale to work out where to place the blocks, etc. Of specific concern are the details of the mast parrels, the placement of halyard and downhaul for optimum sail tension, and the placement on boom and battens of sheets and reefing lines. Take-up spools for running rigging (which will live under the cockpit well, above the chain in the chain locker) need to be designed as well.

This is the list as it stands at the moment. A few more items will probably need to be added as we move along. If you have the time, the skills and the inclination to tackle some of these, please let me know; we are, of course, looking for more engineers to join the team. The work is on a volunteer basis until the project reaches the equity crowdfunding stage.

If any of this brings up questions in your mind, please ask! That’s the main purpose of this exercise—to see if anyone can poke holes in our plans, or open us up to ideas we haven’t thought of or considerations we haven’t been aware of.

Saturday, December 16, 2017

The Sails Revisited

Based on the positive test results from the 1:12 scale model, the design of Quidnon nouveau-retro Chinese Junk sails is almost fully baked. But there are a couple more bothersome problems to solve. Junk sails are attached to the mast using parrels, which are short lines or straps running along the battens and around the mast. This generally works rather well, but produces a couple of unintended effects:

1. The sail tends to rotate forward on the mast because the part of it that is aft of the mast is larger and therefore heavier. To counteract this tendency, Junk sails employ an additional control line called a “luff hauling parrel” which is laced through the front of the battens and then around the mast. It is yet another line to adjust, and it would be nice to get rid of it. Depending on the design of the sail, other minor control lines may be necessary as well, further complicating the handling.

2. On one of the tacks (depending on which side of the sail the mast is) the sail drapes over the mast, distorting its shape and making it a less efficient airfoil. Without this distortion, each panel of Quidnon’s sails forms a very efficient airfoil, similar to a Lateen sail. This is an important effect when sailing hard on the wind, making one tack significantly more efficient than the other.

To get rid of these unintended effects, I would like to introduce a new piece of rigging: the batten standoff. These are basically sticks that fasten onto the battens at one end and onto the parrels near the mast on the other. The batten standoffs do two things: they keep the sail from sliding fore-and-aft on the mast, and they push the sail away from the mast. Under most circumstances they are self-tending and don’t require adjustment.

At their ends near the mast, the standoffs are daisy-chained on lines—batten standoff lanyards—that hang down from the end of the halyard. These lines make sure that the standoffs hang almost but not quite horizontally: they have to slope slightly toward the mast, so that they don’t ride up the mast when under compression. If the mast is to starboard of the sail, it may be necessary to walk forward and pull down the batten standoff lanyards after reefing while sailing on a port tack, when the standoffs are under compression. When they are under tension, they will be pulled into position by the battens and settle a bit further by themselves due to gravity. Thus, when reefing while on a port tack, it is best to release the sheet first, allowing the sail to luff, then release the halyard partway, then haul in and tighten the reefing line, and finally haul in the sheet to power the sail back up.

The batten standoffs have to be cheap, light, reliable and easy to jury-rig or to replace when they fail. To achieve this, I intend to make them out of aluminum pipe. The pipe is cut to length, the ends are tapped, and stainless steel threaded rod is screwed into the ends. The mast end consists of a triple clamp, with two horizontal slots for the parrels and one vertical slot for the lanyard, all tightened together using a single Nylock nut. The batten end, which goes through a hole in the batten, has a couple of washers and a Nylock. There will have to be 24 batten standoffs (6 battens × 2 sides × 2 sails) and they will cost a bit of money to fabricate (out of aluminum pipe and bar and stainless steel threaded rod, two rubber washers and two Nylocks). But I think that the improved performance and the elimination of extra control lines will make it worth it.

There is also an element of perfectionism to it. There is some amount of extra joy to be had in looking up and seeing a perfect, maximally simple, undistorted form of the sail lit up by the sun against the sky.

Friday, December 15, 2017

Hull Shape Revisited

Click to enlarge
The second post on this blog, which I started almost exactly four years ago, was titled “Hull Shape” and featured the sketch shown on the left. A lot of work went into it. Concerns such as minimizing cost, maximizing ease of construction, maximizing interior living space and many others were addressed. A key feature of the design was the ability to combine the structure of the keelboard trunks with the water ballast tanks. Their position and size were based on many constraints, but the result was that water ballast alone turned out to be insufficient. Although it was more than enough to ensure stability under sail, more ballast would have to be added further aft in order for the boat to sit on its lines.

After many design iterations, the additional ballast was confined to a steel scrap-filled cement block bolted in place under the chain locker, which is, in turn, located under the cockpit. An entire sequence of steps was drawn up for dropping it out, with the boat in the water, before sweating the boat ashore using the anchor winch (to serve as a temporary beach house) and for winching and bolting it back into place with the boat once again in the water. But it was, essentially, a complication. And now, after four years of thinking through all of the various details, happily, it turns out to be unnecessary.

One of the worst mistakes one can make is to build based on an imperfect plan: build in haste, as it were, repent at leisure. Four years may seem like a long time to design just one boat. Most boat designers worry about time to market, remaining competitive, keeping the money coming in and other such issues. I am not worried in the least about any of that. I just want to design a very good boat that I am going to like, and that plenty of others will too. I am quite a few years yet away from retirement, my son is a few years yet from being able to serve as master of a ship, and so I am not going to rush. When designing something and faced with a problem, bad ideas are the first to arrive, while the good ones can take a very long time.

That said, the project is moving along. Thanks to the crowdfunding exercise of last summer, we are now running on licensed/donated CAD software (instead of lots of evaluation versions) and have a new, powerful, dedicated server box for doing renderings and running simulations. There is a list of a dozen or so to-do items, none of them huge, that have to be worked out before we can have the plans analyzed and signed off on by a marine architect, and we have the money to pay him. The questions to be answered are along the lines of “How thick should we make the fiberglass”, “What gauge steel do we use” and so on. Once past that point we will accept equity investment and start building hulls in several places around the world where people are waiting for us.

That is actually a good position to be in, making it a very good time to try very hard to resolve the few remaining unsatisfactory issues with the design. The solid ballast box is one issue. The fact that the sails are much more efficient on one tack than the other when sailing close-hauled is another. We’ll deal with that one later; today we kill the solid ballast box.

When I drew up Quidnon’s initial lines, I tried to follow Phil Bolger’s advice about square boats—that complicating their hull shapes adds more to their complexity and expense than it adds to their performance. But here is a counterexample: I believe that this change will subtract from the expense (no more solid ballast box or the mounting brackets it requires; simpler hull shape aft because the recess for the box is no longer needed) while boosting performance.

Previously, the bottom of the hull forward of amidships consisted of the bottom and two sides joined at two chines. The angle between them was 100º aft of amidships while forward from amidships it decreased until they met at a point at top and center of the bow, where the angle between them went to 0. The modification is that forward of amidships there are now four surfaces rather than three that come together to a flat spot at top and center of the bow. The bottom is now formed from two surfaces, and the centerline, called the stem, is buried a bit deeper than the two chines. This modification adds the exact amount of buoyancy forward that’s needed to make the boat sit on its lines without the fixed ballast mounted aft.

But then there are the other benefits. First, there is the improved motoring performance. When sailing on almost any point of sail Quidnon heels over a bit and presents a lopsided “V” to the water, which cuts very well through the waves. But when motoring the hull sits level and the flat surface presented to the waves at the bow slows it down. Just a small amount of deadrise at the bow (that’s the term for the “V” shape of the bottom) is enough to deflect the flow of water to the sides rather than making the boat bounce up and down while pushing an energy-wasting roll of froth with the bow (a boat with “a bone in its teeth” is Bolger’s term for that effect).

Simulations using Orca3D software showed that prior to this change to the hull shape Quidnon would actually take less power to push forward at hull speed when loaded with 10 tons of cargo then when motoring empty. This was because when empty the stern would be quicker to bog down. Getting rid of the cargo box will lighten the stern, and the added buoyancy at the bow will extend the effective waterline length, both of these changes counteracting this tendency. Moreover, when motoring along rivers and canals with the masts dropped there is no reason not to drain the water ballast, to lighten the load. Under these circumstances, having solid ballast mounted aft would be most unhelpful. When motoring without the ballast, Quidnon may be able to push its hull speed somewhat. We’ll run simulations to confirm this.

One more benefit: the slight “V” shape at the bow will not only deflect the flow of water but also of floating debris and ice chunks. Without this feature, the debris would wash directly past the prop, possibly fouling it. And as for ice, Quidnon is by no means meant to serve as an icebreaker, but it should be able to sail through many forms of ice. Sailing through ice is a big topic, and I will take it up separately later, but Quidnon’s bow turns out to be almost perfect for powering through pancake ice, slush, thin crust and other varieties of frozen water that occur in the fall and the spring. Having an “icebreaker” bow surfaced with roofing copper may allow Quidnon to extend the season a month or so in each direction.

Lastly, this change to the bow shape adds a welcome visual feature to what was previously a rather blank and featureless bow. Now, Quidnon’s hull shape is not designed to titillate—it will do enough other things that other boats can’t do to make up for its somewhat unexciting hull shape—but having a bow that looks more like a bow than like half a transom is a nod in the general direction of boating fashion that some people would I am sure welcome.

Tuesday, October 10, 2017

World's Largest Playground

Lake Baikal
Quite a number of people in the world have taken up a nomadic lifestyle by living aboard boats. Instead of cooperatively running in the rat race, they have escaped and now work some vague and sketchy internet-based job while sailing around the islands of the Caribbean or around the Mediterranean, with the Greek islands a particular favorite. Other favorite cruising grounds, for those who don’t much care for the open ocean, include the canals of England or Canal du Midi in France. The Inside Passage which runs up the coast of British Columbia from Washington state to Alaska is another favored playground. The Intracoastal Waterway that runs along the Eastern Seaboard (and is lovingly called “the ditch”) is said to start in Boston, Massachusetts, but can really only be said to exist between Norfolk, Virginia and Brownsville, Texas, on the Mexican border. The more adventurous go through Panama Canal and go island-hopping among Pacific atolls. There are many others. But there is one truly gigantic cruising ground that is charted, dredged, has plenty to see and plenty to do, but remains almost entirely unexplored.

The boats used depend on the application: the seaworthier sailboats—keelboats and catamarans—for the ocean, while motor boats are restricted to the coasts, the canals and the rivers. There are exceptions: plenty of keelboats try to get through the Intracoastal and often end up running aground, and every autumn a steady stream of sailboats and catamarans arrives from Canada via the Erie Canal and Hudson River with their masts down (to make it under the bridges) and their decks a mad tangle of rigging.

There is a lot to like about cruising: the relaxed, unhurried lifestyle (you move at your own pace with no schedules to hurry you along); there is the chance to explore new places that are not easily accessible except by water and therefore not likely to be overrun with tourists; the intimate contact with nature and the chance to observe it daily at close range.

One of the biggest problems with cruising is that it’s boring: virtually all of the cruising grounds have been mapped out, with detailed cruising guides telling you where to go and what to look at. Essentially, when you go cruising, you are signing up to do something that’s already been done.

Another problem with cruising is rich people. Now, there is nothing wrong with being rich, and a good quote to remember is Deng Xiaoping’s 致富光荣 (zhìfù guāngróng): “To get rich is glorious!” The problem is with people who try to act rich around you while you are trying to ignore all of that competitive nonsense and just have a good time. To quote me: “To act rich is in bad taste.”

An associated problem is that cruising tends to be expensive: the industrial sector that supplies the boats is competitive, and it competes on the basis of ostentation—in sportiness and luxury—while catering primarily to those who want to act rich. And what sits at the intersection of sportiness and luxury is a financial black hole: the boats that result from this process are maintenance nightmares, and the most common topic of discussion among cruisers is getting their broken stuff fixed, wherever they happen to end up.

And the offshoot of all this is that most cruisers happen to be over the hill. The vast majority of those I’ve seen are baby boomers squandering their children’s inheritance on expensive toys, marina transient fees (which cost as much as hotel room stays) and lots of trips to local restaurants. Most of them are reasonably friendly and personable, but what they mostly talk about is insipid: the quality of the food and the service, the weather and, of course, what broke and how they fixed it or are planning to. If this doesn’t sound too adventurous or exciting to you, then perhaps you are right.

And then it occurred to me that there is a cruising destination that hasn’t been explored at all: Russia. Russia has the largest network of navigable waterways in the world: over 100,000 km long. The European part of it is 6,500 km long, all of it dredged to 4 m (13 feet). A system of canals connect it into a single network of waterways that reaches from the Baltic to the Ural mountains and from the Arctic Ocean to the Black Sea. The following map shows all of the navigable waterways in light blue.

Click to enlarge

Of particular interest is the area just inland from St. Petersburg, which is on the Baltic Sea. River Neva, which is short and wide, connects it to Ladoga Lake, which is the largest lake in Europe. It has islands, fjords and plenty of good sailing. From there is the somewhat smaller Onega Lake, and rivers and canals then run on to Moscow and a ring of cities around it, which are some of the most spectacular travel destinations in Russia, featuring medieval fortresses and monasteries, most of them accessible from the water. South from there, the mighty Volga River takes you through most of the rest of Russia’s historical heartland. Then, via the Volga-Don Canal, you can cross over to River Don, which takes you to the Black Sea.

There are a few logistical problems with going on such a cruising adventure. One is that no foreign-flagged vessels are allowed on Russia’s inland waterways. Another is that a local skipper, who speaks fluent Russian and knows the local regulations, is an absolute requirement. Also, any small craft that goes on this adventure has to be maximally self-sufficient: there are few to no marinas offering yacht repair services to be found. Lastly, the cruising season runs from May through October. It can be stretched by a few weeks each way further south, but nobody in their right mind would brave River Neva before the end of April, when Onega Lake has dumped its load of winter ice into the Baltic. But none of these problems is insoluble.

Specifically, it has occurred to me that Quidnon, by its design, makes it a splendid choice as a platform for such an adventure. It is simple, rugged, quickly and cheaply constructed from commonly available materials and parts, is safe in both deep and shallow water, and can be set up for comfortable living in a harsh climate. I will explain the details of this in the next post. Meanwhile, please enjoy the scenery!

Caspian Sea
Volga Delta
Yenisei River
Ladoga Lake

Saturday, August 5, 2017

The Self-Sufficient Haulout

A self-sufficient sailor needs to be able to get his boat in and out of the water either with minimal assistance or entirely unassisted.

This need arises in a variety of situations, both common and less so:

1. To deal with maintenance and emergencies.

1.A. To redo the bottom paint and to make emergency repairs that cannot be done with the boat in the water. With Quidnon, the list of such emergencies is much smaller than with most boats. There is no engine shaft, cutlass bearing or propeller; these are integral to the outboard engine, which is easy to pull out for servicing. There are no through-hulls below the water line; raw water intakes for the ballast tanks are via siphons. The bottom is surfaced with roofing copper that lasts longer the useful lifetime of the boat. The sides below the waterline need to be scrubbed and painted periodically, but this can be done with the boat drying out at low tide. Marine growth on the bottom, which cannot be reached while the boat is drying out, simply gets crushed and ground off against the sand or gravel and falls off. Still, there are situations when a haulout is needed for maintenance.

2.B. To get out of the water if a hurricane or a typhoon is bearing down on you. The easiest thing to do is to run Quidnon into the shallows in a sheltered spot and to run long lines out to surrounding rocks and trees. But an even better option is to haul it clear of the water first. While other yachts are busy hunting around for a hurricane hole (a sheltered spot with enough water to get in and out without running aground) or wait in line at a boatyard or a marina for an (expensive) emergency haulout, the captain of a Quidnon has plenty of options.

2. To turn Quidnon into a waterside home.

2.A. Suppose you arrive at a tropical island and decide that you want to spend a few months there, subsisting on fresh-caught fish and crabs, coconuts, sea bird eggs, growing a patch of taro or yucca and generally lazing around. There is nobody around to assist you. You enter the lagoon, find a nice sheltered spot with an easy grade up a white sand beach, let Quidnon nose up to it, jump overboard, wade ashore, walk the anchor ashore, dragging the chain, and bury it in the sand. Then you drain the ballast tanks and unbolt and drop the solid ballast box that fits snugly in a recess under the cockpit. Finally, you spend an hour or so working the anchor winch while placing coconut palm logs under the hull for it to roll over. Voilà! Quidnon is now a beach house: it doesn’t rock, the bottom doesn’t accumulate seafood, and getting ashore is as easy as climbing down a ladder.

2.B. You spend your summers cruising inland lakes, rivers and canals, catching and drying fish, hunting wild game and harvesting wild-growing fruits and vegetables along the shoreline. Autumn arrives, it starts snowing and the waterways start icing over. Before they become icebound and dangerous you pick a spot where you want to overwinter: somewhere sheltered, with plenty of firewood available locally. If you are lucky, you find a spot that has something like a beach, with no more than a 10º grade. Failing that, you grab a shovel and an axe (to chop through tree roots) and dig down a slope. Then you follow the same procedure as above. If you are quite far north where temperatures stay below freezing for months on end, it would make sense to insulate the hull on the outside by piling snow against it (snow is an excellent insulator, and is free).

There are lots of other, less extreme scenarios. For example:

3.A. You either own or lease a patch of land next to a waterway and build a boat ramp. Then, equipped with nothing more than a boat trailer and a pickup truck or an SUV you can either live on a Quidnon ashore or put it in the water and go cruising. This would be ideal in colder climates, where you would prefer to stay put during the winter. In going through the Intracoastal Waterway, I saw plenty of places where such a lifestyle would make sense. People there tend to have a full-size house and a half-size boat, but why not have a full-size boat and a small, utilitarian structure on land used as a workshop and for storage?

3.B. For those who have a shoreside dwelling, it is perfectly reasonable to own a Quidnon but only use it during the warmer months. But storing a boat, whether in the water or on shore, is often an expensive proposition. But there are plenty of creative ways to store boats in close proximity to boat ramps. For example, people who own vacation properties are often quite happy to have you pay a little bit of rent—much less than a marina or a boatyard would charge—to store your boat on their land during the off-season. Again, all you need is a trailer, a good-sized pickup truck or SUV and a boat ramp that’s nearby. (If it’s farther away, you will need highway permits and signal cars, because Quidnon qualifies as a “wide load.”)

The mechanics of a self-sufficient Quidnon haulout are as follows.

1. Get rid of all ballast. Fully ballasted, Quidnon weighs in at 12 tons, 8 of which is ballast. Of that, 5 tons is water ballast, which can be made to disappear by draining the tanks. The remaining 3 tons is solid ballast consisting of steel scrap encapsulated in a concrete block bolted into a recess in the bottom directly under the cockpit and held in place by several large bolts and a purchase. To remove the solid ballast, with the boat in the water, it is necessary to rig and tighten the purchase, undo the nuts on the bolts (which are along the sides of the chain locker below the cockpit, so the cockpit sole needs to be removed to access them), then ease the ballast down to the bottom using the purchase. Finally you would probably want to attach a line and a buoy to the ballast block before letting go of it, so that you can find and retrieve it later.

2. If your haulout spot has overhead obstructions (tree branches, power lines) remove the sails and drop the masts. This can be done by one person using a comealong. Once down, the sails and the masts are lashed down on top of the deck arches, to keep them safe and out of the way. On the other hand, if your haulout spot is exposed, you may want to leave the masts up and mount wind generators on top of them, to avail yourself of the free, though somewhat unreliable electricity.

3. Let Quidnon nose up to a grade no more than 10º. The maximum slope for boat ramps is 15% grade, which is 8.5º; most beaches are less than that. If you are hauling over ground solid enough for logs to roll, all you need are the rollers; if not, you will need to lay down some logs to serve as rails. Walk the anchor ashore and bury it, as described above. Work a log under the skids, then work the anchor winch to move the boat forward. The first log will try to squirm out and will require some gentle persuasion using a sledgehammer. Repeat. Catch the logs that slip out the back and move them to the front.

4. The amount of time required to move Quidnon 100 feet up a 10º grade using a crab winch (where a single person rocks a winch handle back and forth) is around an hour of steady effort (assuming a person can generate 100W of power) not including the time needed to move and pound in logs, drink water, curse, swat insects and whatever else. Reasonably, it adds up to a few hours’ work for one reasonably fit person. Of course, if you have a 1kW generator, an electric winch and a couple of helpers you can get this accomplished in around 20 minutes.

Quidnon will come equipped with rails, integral to the keelboard trunks and surfaced with bronze angle to distribute the load and to resist abrasion. The round logs are not included and would need to be procured locally. Driftwood is often a good, free source, and can be collected beforehand in preparation and stored on deck. It can be used as firewood afterward.

Once Quidnon is far enough from the water, it is important to level it, by digging down or by pounding in wedges. It is rather important that it doesn’t try to roll back into the water one stormy night while you are asleep. On the other hand, if your haulout spot is in an area that is considered dicy from a security standpoint, you may want to crank the boat around, so that it faces the water, and rig up a system so that a few blows with a sledgehammer and a few minutes on the anchor winch will cause it to roll back into the water (or onto the ice) and, one would hope, away from danger.

Incidentally, although this is hardly their main function, the rails over which Quidnon is rolled ashore can also be used to turn Quidnon into a sled, over ice. Ice provides a nearly frictionless surface, and it should be possible for a few people to haul Quidnon to a new location a few miles over ice. This trick may come in handy if halfway through the winter the game or the firewood at a haulout site on one side of a river becomes depleted. A particularly adventurous Quidnon skipper might even consider putting up a bit of sail and taking advantage of a winter windstorm to try a bit of ice sailing. (It would make sense to put up a bit of each sail, and to use the sheets for steering, because the rudders won’t be of much use when gliding over ice… unless the adventurous skipper takes the time to fit them with skates.

If these scenarios seem outlandish to you, then consider the more prosaic ones: while all the other skippers are waiting around with their wallets wide open—for the diesel mechanic to fix their engine, for a scuba diver to cut away the dock line that got wrapped around their prop, for the travelift to haul them out of the water and put them up on jacks so that they can paint their bottom or fix a leaky through-hull, or for a crane to remove their mast so that it can be worked on it—you would be off on your next adventure, self-sufficient and free.